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We analyze the time resolved spike statistics of a solitary and two mutually interacting chaotic semiconduc-
tor lasers whose chaos is characterized by apparently random, short intensity spikes. Repulsion between two
successive spikes is observed, resulting in a refractory period, which is largest at laser threshold. For time
intervals between spikes greater than the refractory period, the distribution of the intervals follows a Poisson
distribution. The spiking pattern is highly periodic over time windows corresponding to the optical length of
the external cavity, with a slow change of the spiking pattern as time increases. When zero-lag synchronization
between two lasers is established, the statistics of the nearly perfectly matched spikes are not altered. The
similarity of these features to those found in complex interacting neural networks, suggests the use of laser
systems as simpler physical models for neural networks.
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Semiconductor lasers, subjected to optical feedback, dis-
play chaotic behavior �1�. The chaotic behavior consists of
very short and random spiking of the laser intensity with the
time interval between spikes depending on how far above
lasing threshold the laser is. Two chaotic lasers can be syn-
chronized with each other and this has allowed them to be
excellent candidates for novel broadband �2–6� communica-
tion devices. Different configurations, such as delayed opto-
electronic �7,8� or coherent optical injection �8–11� have
been used for synchronization of the two lasers. Using opti-
cal feedback, configurations consisting of unidirectional
�7,8� or mutual coupling �5,6,8–11� and variations of the
strength of the self- and coupling feedback have been shown
to result in different synchronization states. The lasers can
synchronize in a leader-laggard or anticipated mode, as well
as in two different synchronization states; achronal or gener-
alized synchronization �12–14� where the cross correlation of
the intensity spikes is time shifted by the feedback delay
time but neither laser acts as a preferred leader or laggard or
isochronal synchronization �zero-lag� where there is no time
delay between the two lasers’ chaotic signals �5,6,15–17�.

Zero-lag synchronization of lasers was recently extended
to a cluster consisting of three semiconductor lasers, mutu-
ally coupled along a line, in such a way that the central laser
element acts as a relay of the dynamics between the outer
elements �18,19�. The zero-lag synchronized dynamics of re-
motely located chaotic signal sources has sparked an interest
in such systems in part because they have features also seen
in biological and neural transmission networks. Though the
time scales for the two phenomena are vastly different; lasers
spiking on 100 ps time scale while neurons spike on ms time
scales, much of the dynamics and spiking statistics appear to
have common behavior. Here we report on the spiking opti-
cal pattern of solitary and two mutually coupled chaotic la-
sers, observed on a time scale which resolves the individual
spikes, in both their synchronized and unsynchronized states
and determine the statistical behavior of the spiking. This
further allows us to establish an analogy to the spiking be-
havior of single and interacting neurons.

Our experimental setup is shown schematically in Fig. 1,
where two semiconductor lasers are coupled via a partially
transmitting mirror placed in the middle of the coupling op-
tical path between the lasers. In the actual experiment the
self-feedback and the mutual feedback paths were spatially
separated through the use of beam splitters �6�. The time for
light propagation from the partially transmitting mirror to
one of the lasers is � /2. We distinguish between the follow-
ing three limiting scenarios. In the case of a fully reflecting
mirror, the lasers are uncoupled and each laser is subject only
to a delayed self-feedback. In the second scenario where the
mirror is fully transparent, each laser receives a delayed sig-
nal from the other, and this configuration is known as “face-
to-face.” In the intermediate scenario, the mirror is partially
transmitting and each laser is driven by two delayed signals,
one from self-coupling and one from mutual coupling.

In the experiment we used Fabry-Perot semiconductor la-
sers emitting at 670 nm wavelength, selected to have nearly
the same threshold current, emission wavelength, and output
power. The temperature of each laser is stabilized to better
than 0.01 K and the individual laser temperatures are tuned
so that the two lasers have nearly identical output wave-
lengths. The self- and mutual feedback loop time � is
23.55 ns. Two fast �50 GHz bandwidth� detectors biased via
a 40 GHz bandwidth bias T measure the output intensity of
each laser. The dc current into the bias T is used to measure
the average dc power falling on the detector while the ac
currents are measured simultaneously in two channels of a
12 GHz bandwidth, 40 GbGS/s oscilloscope �Tektronix
TDS 6124C�.

partially transmitting mirror

FIG. 1. Schematic experimental setup. Two lasers are mutually
coupled via a partially transmitting mirror placed in the middle of
the coupling optical path between the lasers.
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For the case in which the mirror is fully reflecting the
lasers are decoupled. Each laser becomes chaotic due to the
self-feedback but the chaotic fluctuations of the lasers are
completely independent of each other. A typical trace of one
of the laser output intensity measurements as a function of
time is presented in the top panel of Fig. 2, for a case when
the ratio of the actual laser current to the threshold current p
is 1.03. The time dependent intensity of the laser consists of
spikes of typical duration of �120 ps. In the following three
panels we show the same laser intensity fluctuations re-
corded after a time, ��=23.55 ns�, 2�, and 3�. Figure 2
clearly indicates that on a time scale of a few optical delayed
self-feedback times the timing of the spikes repeats itself,
where as time elapses the spikes gradually broaden and fi-
nally disappear as new spikes emerge in new positions, form-
ing a new pattern. This behavior is physically easy to under-
stand since the feedback photons circulate in the long
external cavity with a periodicity � and the laser receives
nearly the same feedback pattern with this periodicity. The
photon lifetime in the cavity is finite, however, and thus the
feedback waveform slowly changes. After many � periods
�many photon round trips� the feedback waveform and the
laser’s chaotic fluctuation pattern will have changed com-
pletely. From this explanation we can also conclude that the
revival of the chaotic pattern with period � will be nearly
independent of p since the chaos is caused and determined
by the feedback photon train which has a similar form with
period �. This indeed is also observed in the experiments
where the periodicity of the chaotic signal with time � is
independent of p. To further demonstrate the repeatability of
the spiking patterns after a delay � in the bottom panel of

Fig. 2 we show the overlaid intensity trace at time t+� and at
time t+2�.

A quantitative analysis of the spike statistics requires the
definition of a low-signal threshold so as to eliminate the
small spikes in the measured laser intensity which are the
result of noise in the measurements. Our threshold was cho-
sen to be at twice the average detector noise level, and the
timing of a spike above this threshold level was determined
according to the time of its maximum intensity. For each
measurement we accumulated 70 000 consecutive spikes. A
histogram of the time interval between consecutive spikes is
presented in Fig. 3 for various values of p.

The probability distribution of the time intervals between
two spikes consists of two main features. The distribution for
relatively long time intervals between the spikes follows a
random, Poisson distribution where for small p values the
exponential decay rate increases linearly from zero as a func-
tion of p, as shown in Fig. 4�a�. For very short time intervals
the Poisson distribution is altered so that immediately after a
spike it is most improbable to record a second spike. The
most probable time between consecutive spikes is defined, as
for neural spike trains, as the refractory time �20,21�. Figure
4�b� indicates that the refractory time increases as the laser
current approaches the threshold value, which makes physi-
cal sense, since at low pumping currents it takes longer to
rebuild the laser gain after the previous pulse had depleted it.

The chaotic laser dynamics are well described by the
three coupled Lang-Kobayashi rate equations for the optical
field amplitude E, the optical phase �, and the excited car-
riers n of the gain medium �22�. These equations also predict
that the intensity chaos has the form of a spiking behavior of
the lasers on a 100 ps time scale, with no laser emission
between spikes, in full agreement with the observations. The
numerical simulations of the Lang-Kobayashi equations in-
dicate that the reason why after a spike the laser ceases to
emit for a refractory time is because the number of carriers
drops well below threshold, hence a successive spike is for-
bidden until the population is repumped again by the laser
injection current.
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FIG. 2. A trace of 15 ns duration of the intensity of one laser
followed by plots of the same laser intensity after a time �, 2�, and
3� with �=23.55 ns. The laser was operating with p=1.03 and with
a reflected power of a few % of the laser output intensity. In the
bottom panel the intensity trace at time t+� and at time t+2� are
superimposed, demonstrating the slowly decaying periodicity of the
spiking pattern.
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FIG. 3. �Color online� The probability for time intervals be-
tween spikes for various values of p.
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For the case of a fully transparent mirror, the two face-to-
face lasers, operating at nearly identical p values, synchro-
nize achronally. It is convenient to characterize the synchro-
nization via the time dependent cross correlation function for
the lasers intensities � defined as
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where IA and IB are the time dependent intensities of lasers A
and B. The achronal cross correlation is characterized by two
dominant peaks in the intensity cross correlation function at
±�. We find that the statistics of the intervals between spikes,
the refractory period, and the repetitive spiking pattern with
optical delay time � are not altered. However, when the two
face-to-face lasers are configured to have different p values,
the lasers no longer synchronize, and from a sample of the
signals transmitted between the lasers it is not obvious that
one could determine that the two lasers are operating with
two different p’s. The statistics of the spike intervals, how-
ever, is altered, and reveals not only that the lasers have
different p values, but also yields the two p values used in
the experiment. To demonstrate this in Fig. 5 we show the
distribution of times between spikes when p1=1.1 and p2
=1.4 where as previously, the feedback strength for each
laser is a few percent of its output power. Figure 5 indicates
that the distribution for each of the two lasers is a combina-
tion of the distributions of each chaotic solitary laser, as
shown in Fig. 3. The distribution consists of two maxima
related to the refractoriness connected to p1 and p2. For time
intervals greater than both refractory times the distribution
follows a Poisson distribution. Similar results are obtained
for all combinations of p values lying in the range of 1 to
1.5. Thus a statistical analysis reveals information about, and

differentiates between, two sources operating with different
parameters.

Figure 5 indicates that although the two mutually interact-
ing lasers with differing p values are not synchronized, the
distribution of the intervals between spikes of each indi-
vidual laser contains information about the parameter p of
the other laser. More precisely, from the measurement of the
distribution of spiking time intervals containing the two re-
fractory periods only and using its own known parameter p,
each laser can deduce the parameter p of the other laser. This
mechanism may play an important role in neurobiology,
where the statistical measure of the short intervals among
spikes may reveal information about the individual state of
the interacting neurons.

For the third scenario of a partially transmitting mirror,
each laser receives both self-coupling and mutual coupling
signals, and provided that the two lasers have equal or nearly
equal p parameters the two lasers synchronize isochronally
with zero time lag �15�. The correlation coefficient for the
intensity traces averaged over 200 100-ns-long time seg-
ments, exceeds 0.95 for p�1.2. The correlation is around
0.9 for p values near 1, where low frequency fluctuations
�23� appear which are included in the calculation of the sta-
tistics and somewhat degrade the value of the correlation
coefficient. In the following we investigate whether the de-
viation from perfect zero time lag synchronization is caused
by a mismatch between the timing of the spikes, by the dif-
ference in their heights or by the background noise in our
measurements.

Figure 6�a� shows the histogram for the mismatch be-
tween the timing of the spikes of the two lasers in the iso-
chronal phase. The histogram indicates that the most prob-
able time difference between the spikes of the two coupled
lasers is zero since the average difference between the timing
is less than 25 ps, our sampling rate. The width of the histo-
gram, limited by our detection bandwidth, is extremely nar-
row ��80 ps�, and is not resolved by our detection system.
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FIG. 4. �a� The exponential decay rate of the probability of time
intervals between spikes as a function of p obtained for time inter-
vals greater than the most probable time. The decay rate is a linear
function of p for low p values, as indicated by the linear fit �solid
line�. �b� The most probable time interval, the refractory time, as a
function of p.
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FIG. 5. �Color online� Two lasers in a face-to-face configuration
corresponding to a fully transparent mirror in the schematic of Fig.
1. The first laser operates with p=1.1 and the second laser with p
=1.4 and the coupling strength is a few % of the laser intensities.
The probability for the time intervals between spikes is presented
for each one of the lasers. The two maxima correspond closely to
the refractoriness of the solitary lasers operating with p=1.1 and 1.4
�see Fig. 3�.
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We also examine the relative difference between the
maximum intensities of two correlated spikes in the two
lasers, and the histogram consisting of over 60 000 pulses is
presented in Fig. 6�b�. Shown is the difference between the
maximum of each spike for each laser divided by the average
of the spike amplitudes �amp/aveamp. This result indicates
that the average relative difference between the maximum
heights of temporally correlated spikes is �10%. It is pos-
sible that the mismatch between the maximum intensi-
ties of these spikes is much lower, since the maximum inten-
sity measured is very sensitive to the precise sampling time
of the oscilloscope relative to the shape of a spike. From
these observations we cannot definitively determine the
source of the imperfect synchronization, but it appears likely
that it is not in the spike timing but rather in the spike
amplitude.

Phenomena similar to our observations have been found
in the communication of neurons, where immediately after
the activation of an action potential it is more difficult to
excite a second spike. Neural communication has been docu-
mented to have many features �such as refractoriness, the
repetitive form of the spiking pattern, synchronization be-
tween spatially separated neuron groups, and the spike sta-
tistics �19,24,25�� which are similar to those observed for the
chaotic lasers. Our demonstration that both the timing and
maximum intensities of spikes are extremely well synchro-
nized with zero time lag could have possible important im-
plications for understanding the corresponding phenomena in
neural system �26,27�. One of the fundamental questions in
neuroscience, for example, is how information is encoded in
the neuronal spike trains �28�. Is the information contained in
an individual spike form or in the interval between spikes, or
is it the mean rate of spikes and timing which matter �29�?
Traditionally it has been thought that most of the relevant
information was contained in the mean firing rate of the neu-
ron. It is clear, however, that an approach based on a tempo-
ral average neglects all the information possibly contained in
the exact timing of the spikes and the statistical measure of
the short intervals among spikes may reveal information
about the individual state of the interacting neurons. Re-
cently more and more experimental evidence has accumu-
lated which suggests that a straightforward firing rate con-
cept based on temporal averaging is too simplistic to
describe neural information transfer. If, at each processing
step, neurons had to wait and perform a temporal average in
order to read the message, the reaction time would be incom-
patibly long compared to experimental evidence.

In conclusion, our results for chaotic lasers show that in-
dividual spiking laser units are able to generate irregular
spike patterns which become synchronized when two such
units are coupled to each other, without any time delay, al-
though the transmission time can be relatively long. Syn-
chronization is maintained even on the time scale of indi-
vidual spike widths. For chaotic lasers, transmission of
information by the spiking pattern has been demonstrated,
and the repetitive bar-code pattern we observe has features
which are useful for communication applications of these
signals. The similarity of the lasers to neural systems is
noted, and it is possible that complex neural systems can be
effectively modeled by the much simpler and much more
flexible and well-controlled experimental environment of
coupled laser systems.
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